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SiC is proposed for structural applications in high
pressure, high temperatore, high pgas velocity
environments of turbine and rocket engines. These
environments are typically composed of complex gas
mixtures containing carbon dioxide, oxygen, water vapor,
and nitrogen. It is known that the primary oxidant for SiC
in these environments is water vapor [1]. The oxidation
reaction occurs by the reaction:

SiC + 3H,0(g) = Si0; + CO(g) + 3Hx(g) n
In addition, it has been found that the SiQ, forms a

volatile hydroxide in these enviconments by the following
reaction [2-5]:

Si0;, + 2H,0(g) = Si(OH)4(g) @

The oxidation/volatilization reactions follow paralinear
kinetics [6]. ‘These kinetics have been modeled by
Tedmon (7] for chromia forming alloys and are directly
applicable to SiC oxidation/volatilization:

dxidt=k/2x - ky )

where x is the oxide thickness, t is the time, k;, is the
parabolic oxidation rate constant, and k; is the linear
volatilization rate constant. At long times a steady state is
achieved in which the oxide growth rate becomes equal to
the oxide volatilization rate. Under these conditions a
constant oxide thickness, Xy, is found that is given by:

Xumis = kf2ky @

The parabolic oxidation rate constant, k,, has been studied
as a function of water vapor partial pressure and
temperature [8,9]. These dependencies have been
summarized in Table 1.

The pressure, temperature, and gas velocity dependence of
the lincar volatilization rate constant, k, have been
measured empirically [4). They have also been modeled
using an expression for gas boundary layer transport [5):

ki = 0.664 (Lvprm)'2 (np/D) '* DpiL. ()

where v is the gas velocity, 1) is the gas viscosity, D is the
interdiffusion coefficient of Si(OH); in the combustion
gas boundary layer, p is the concentration of Si(OH); at
the silica/gas interface, and L is a characteristic length.
This expression for k; can be reduced to the combustion
variables of pressure and velocity:

ki o< V1P (6)

Remarkable asgreement between the cmpirical and
boundary layer transport model was found (4,5].

The pressure, temperature, and gas velocity dependencies
for the rate constants k;, and k; are summarized in Table 1.
Because of these different dependencies, the limiting
oxide thickness (Eq. 4) under different combustion
conditions varies. The variation in this thickness has been
explored with respect to the rate constants as well as the
pressure, velocity, and temperature and is shown ir oxide
thickness maps in Figures 1 and 2. Examples of predicted
limiting oxide thickness are shown for various conditions.
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Table 1. Pressure, temperature, and velocity dependence
for oxidation and volatilization rate constants.

n, P(H;0)" | Tdependence | m,v® Comments,
(kJ/mol) reference
Parabolic oxidation rate,
0.6740.19 2810 156 n/a (8]
0.8540.05
1.0 68 na Si, [10]
0.9140.10 — na {91
Linear volatilization rate, k,
1.5040.13 108£7 0.5040.16 | {4]
L5 — 0.50 | calculated, [5)
- 56.7+1.7 - (2]
- 3475 - (8]
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Figure 1. Limiting oxide thickness map as a function of
oxidation and volatilization rate constants.
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Figure 2. Limiting oxide thickness map as a function of
pressure and gas velocity in the combustion environment
at 1300°C.
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